
Building Open
Raven’s Data Store
Fingerprinting
(DMAP)

February 2020

openraven.com 2

Historically organizations have been led to
believe the most significant risk of a data
breach comes from external attackers. In
reality, the majority of data breaches happen
as a result of internal mishandling of data.
In fact, in 2019, accidental data breaches
eclipsed the number of intentional hacks for
sheer amount of data exposed. Furthermore,
by 2025, 99% of cloud security failures will
be attributed to end users, not their cloud
service providers (Gartner).

While data misuse and accidental breaches
bear no malicious intent, they do have
serious ramifications for the consumers and
entities whose data is compromised. They
can also have an equally devastating effect
on the organizations responsible, who suffer
brand reputation decline, loss of revenue,
and worse yet, the loss of customer trust. In
the two years since its inception, GDPR fines
for data privacy violations have eclipsed
$126 million and the statute has resulted in
over 160,000 breach notifications.

If one of the driving factors behind data
breaches is mistakes made by organization’s
protecting the data, the most straight-
forward means of preventing them is to
make it easier to secure the data itself and
consequently avoid the resulting mistakes.
This effort should begin with simply
understanding what data repositories are
present in an organization. This is the focus
of Open Raven’s DMAP service and this
whitepaper.

Overview:
Perception vs.
Reality

 TABLE OF CONTENTS

The Data Breach Epidemic	 3

Answering the Question: Where’s My Data?	 4

Open Raven Data Store Fingerprinting (DMAP)	 7

User Contributions	 12

Building Open Raven’s DMAP	 13

Managing Data Store Profiles	 14

Future Open Raven DMAP Enhancements	 15

Conclusion	 16

openraven.com 3

A major cause of the data misuse problem
is that today’s Infrastructure is increasingly
owned by developers, not IT. These
developers are moving faster than security
can keep pace, and their incentives typically
prize speed or completeness over hygiene.
The consequence? In 2019, over 6 billion
records were made freely accessible not
because of cyber infiltration from state-
sponsored adversaries, but because
of misconfigured databases, backups,
endpoints and services (Dark Reading).

This issue is multiplied by the sheer volume
and variety of data available. Every 2 years,
the amount of data in the world doubles
(IDC). By 2025, it will double every 12 hours.
Even the organizations creating this data
can’t keep up with it – 70% of this data
goes unused.

What’s more, not every asset created is
equal, with some – like data-bearing systems
– demanding much more focus than others.
A lab device, for example, isn’t the same as
a database of customer data that supports a
critical application. If the information within
that database becomes exposed, it requires
immediate action across an organization,
for example:

– Security, IT, Legal, Communications, Exec-
utives and others must mobilize to respond
to the issue accordingly.

– Notifications must go out to customers,
partners and everyone else impacted
(which leads to subsequent loss of trust in
the brand).

– Regulating entities may enforce penalties
on the organization for breach of compli-
ance (e.g., HIPAA in healthcare and FDIC in
finance, etc.).

The damaging result of such an exposure is
that individual lives are impacted and jobs
are negatively affected. So, a functional
heuristic for minimizing any chance of data
exposure and its consequences is to start
with knowing what type of data, and how
much of it, you have in your organization, and
most importantly, where that data is stored.

The Data Breach Epidemic

openraven.com 3

openraven.com 4

One of the most effective ways to minimize risk of data exposure is for organizations to have
a constantly updated view of their data stores which allows them to take appropriate action
quickly when an irregularity is identified. Said another way, they should have a ready means
of answering the question of “Where is my data?” and ultimately “How is it protected?” These
questions are deceptively hard to answer for many reasons:

– Data is growing at
unprecedented rates.

– Data is commonly duplicated
for not only backups, but also
for technical support and data
science efforts to glean insights
the organization can use across
business functions, like customer
support and sales lead-
generation.

– A large (and growing) number
of people handle data – from
DevOps, to IT, to security teams
and now even the boardroom
(Risk & Insurance).

– Most organizations straddle
on-premise and the cloud
infrastructure (IaaS, SaaS) with
no unified view into what is
moving between the two or how
data is being stored.

– Responsible data handling
practices are often not a priority
within an organization, lacking
in training, tools and general
awareness.

The issue with so many people invested in an organization’s data is that best practices for
handling that data are often unclear. Who should have access to that data? When should they
have access to that data? Who are they sharing that data with? By what means are they sharing
that data? Will they be stripped of that access when they leave the organization and how should
that access be removed?

Answering the Question: Where’s My Data?

openraven.com 4

openraven.com 5

A brief exploration of where an organization of at
least modest size is storing data further reveals
why it is hard to answer fundamental questions
about data security. Firstly, traditional relational
databases have not disappeared. They are alive
and well, if not swelling with data that spans
many years. They’re in both the cloud and in on-
premises where they can grow to sizes that defy
easy analysis. They sit on laptops and servers
supporting applications both simple and complex
and at times can even be found supporting
Internet of Things devices as either dynamic or
persistent storage.

NoSQL data stores (e.g., ElasticSearch,
Hadoop, MongoDB) are also commonplace on
corporate networks and even more so in cloud
environments. The type and behavior of non-
relational data stores has exploded in recent
years due to a variety of factors but perhaps
most meaningfully the popularity of data science
and trend towards using data pipelines to
support modern applications. Data pipelines
allow organizations to combine a variety of data
repositories into a single back-end with each
data store being used for a specific purpose well
suited to its specific attributes (e.g., Postgres for
driving the UI, Druid for time series data, S3 for
backups, etc.). Data Science drives a massive
volume of data whereas a visible trend towards
data pipelines is a force behind data store
heterogeneity inside an organization. And the
trend towards new types of data stores should
be expected to continue unabated as graph data
back-ends gain popularity, SQL databases adapt
to cloud native environments (e.g. cockroachDB)
and so on.

Wrapping your arms around where and what
types of data stores is a challenge that goes well
beyond finding the usual RDBMS and NoSQL
data stores for structured data. There are
massive, often even larger piles of unstructured
data on file servers from NetApp appliances to
SharePoint. SaaS applications are increasingly
taking over the load from on-premises file stores
and placing unstructured data in the hands of
third party providers in the cloud.

Thus, building a map that identifies and plots
the data stores of a modern organization can be
incredibly challenging, requiring one to explore
many different areas, from cloud to on-premises
to partner networks, while encountering an
incredibly diverse set of repositories, each with
its own unique attributes. The tools we have
historically to tackle this problem typically leave
us with a best guess at the operating system
along with the running ports and services. This
is a far cry from a clear label of a data repository
and leaves considerable manual effort to the
user to determine what’s actually running on a
server, instance, container, etc.

If data is “the new oil” as
many assert, why haven’t
we put more effort into
properly locating and
labeling our oil wells?

Answering the question: Where’s my data?

Casting a wide net

openraven.com 6

Beyond the sheer complexity of current environments is the fact
that they are also frequently changing due to a move to faster
development cycles (i.e., Agile and DevOps) and transitions to much
more dynamic cloud environments. Classic fingerprinting techniques
such as those used for identifying operating systems by gauging
TCP, UDP and ICMP behavior presumed fairly static OS behavior. If
we are to properly identify a data store, we can’t necessarily afford
the same luxury of presuming behavior will remain as it is today.
Yesterday’s accurate fingerprint – a tactic used to correlate data
sets to identify network services, operating system number and
version, software applications, databases, configurations, etc. – may
no longer deliver the same results as before, requiring both broad
visibility and regular updates to maintain efficacy.

What type of data store attributes one can use to positively identify
a data store will also depend on the level of access to the network
and host system. Ideally, one has full administrative access that
allows for examining the file system or even network traffic.
The reverse is often the case, where minimal access is available
restricting analysis techniques to checking for listening ports and
exploring what can be gleaned by probing the service.

Given that the goal is to discover the unknown data stores that
may become future data leaks, the scenario where one possesses
nothing beyond a handful of ports to interrogate remotely
introduces added risk. This is why a data repository fingerprinting
service must leverage a wide set of attributes and be able to state
its conclusions in probabilistic terms, from low to high confidence.
Ideally, it would also adjust the confidence ratings over time as more
analysis is performed and considered.

Answering the wuestion:
Where’s my data?

Answering the question:
Where’s my data?

Yesterday’s
fingerprinting

The
permissions
problem

openraven.com 7

Open Raven Data Store Fingerprinting (DMAP)

Application fingerprinting (i.e., TCP/IP
fingerprinting) is not a well-studied subject
compared to its predecessor, OS fingerprinting.
While TCP/IP (sequence number, TTL values,
etc.) is a well-defined standard, application
protocols have no enforced commonality, so
TCP/IP fingerprinting provides an ineffective
model for framing an application
fingerprinting problem such as positively
identifying data stores.

Ideally, the solution shouldn’t rely on
applications running on their standard ports.
We need to generate a certain degree of
entropy through application behaviors in order
to create enough data to positively identify a
data store. This is similar to creating a map of a
fingerprint for physical security – the user must
re-position their finger on a reader
(e.g., the iPhone screen) several times to
ensure it is read and properly mapped from
enough angles.

Some application protocols speak HTTP,
which generally offers a wealth of entropy
sources such as status codes, header
values and content. CouchDB, for example,
offers the following.

> nc couchdb-server 5984

GET / HTTP/1.1

HTTP/1.1 200 OK

Cache-Control: must-revalidate

Content-Length: 208

Content-Type: application/json

Date: Thu, 30 Jan 2020 02:11:14 GMT

Server: CouchDB/2.3.1 (Erlang OTP/19)

X-Couch-Request-ID: 2491a24c5c

X-CouchDB-Body-Time: 0

{“couchdb”:”Welcome” <content snipped>}

Choosing the approach

openraven.com 8

> nc mysql-server 3306

J

8.0.18 <0O6ar7•••••k9>#ri51caching_sha2_password

Other applications remain silent until their
protocol is spoken, which presents another
challenge. The banner identification is reliable,
but it requires manual labor since it doesn’t scale
and is only a small fraction of the solution since
most services don’t even present banners.

Protocols may be binary or text-based, or
a mixture of both. For example, the MySQL
banner contains both binary values and text
strings (8.0.18 is the MySQL version, while the
authentication method is
caching_sha2_password). Other binary values

here indicate packet length, sequence numbers,
nonces, etc.:

With all these variables, building manual pattern
detection (regexes, etc.) doesn’t scale and is
cost prohibitive.

DMAP is a classifier at its core. While developers
can write a manual classifier to match up
fingerprint characteristics, this is a task well-
suited to machine learning algorithms for several
reasons. First, the number of data stores is large
and constantly expanding making it diminishingly
reasonable to manually keep up. Similarly, the
number of potential attributes will exceed the
human capacity to discover patterns. Finally,
many data stores are derivative or exhibit similar
behaviors, meaning there may be only nuanced
differences available to differentiate them.

Once machine learning was chosen to be the
classifier engine for Open Raven’s DMAP, several
algorithms were considered. Linear and non-
linear regression were not appropriate choices
because the data in this case is categorical, and
these classifiers are better suited for numeric
data. Neural networks were also considered
but have several shortcomings for the problem
domain, the most prominent of which is that
neural networks are not well suited to non-binary
classification inputs (for example, HTTP response
codes).

Open Raven Data Store Fingerprinting (DMAP)

Deploying effective machine learning

openraven.com 9

A decision tree (and later a decision forest) was chosen for its characteristics that made it well suited for
this type of classification problem:

– It provides accurate results even with small
data sets, allowing theories to be tested early
on with little time investment.

– It provides predictions based on probabilities,
meaning more nuanced results. This enabled
DMAP to pass along the confidence in the
application classification, articulating for
example where it may have 95% confidence
that an application is MySQL vs. a situation
where it’s only 51% confident. This type of
transparency is key to building trust in the
results.

– A decision tree is tolerant of dirty data, allowing
for factors such as varying network latency,
lost packets or early disconnects.

– A decision tree provides probabilistic results
which offer a reasonable (and labeled) “guess”
for edge cases. Users can see how much
confidence Open Raven’s model has with the
provided results.

– It is conceptually easy to understand and
interpret by a human for smaller dimension
data sets, meaning Open Raven’s team
could verify the efficacy of DMAP in early
development.

– To overcome some of the decision tree’s
limitations, a “random forest” was chosen. This
provides protection against overfitting, where a
tree is over-customized to fit the training data
at the expense of providing accurate guidance
on unseen data.

Building a machine learning classifier requires sample data. Given that there are no readily available
datasets, the first step in building Open Raven’s DMAP was to create it internally. To do this, Open Raven
devoted considerable resources to developing a scalable fingerprint ingestion workflow that utilizes both
cloud and on-premises resources (see below for Fingerprint Ingestion).

Against a running application, the Open Raven Fingerprinter
will make multiple connections over TCP, each connection
performing a specific fingerprint (test). These fingerprints are
collected and stored on a per-application basis, mapped to a
known application type.

openraven.com 10

When a decision tree model is built, fingerprints are converted into
machine learning features before being fed to the training model.
Each fingerprint will result in one or more machine learning features,
as shown below:

The above is repeated for each application ingested and finally split-
tested to ensure accurate predictions.

Figure 1: Fingerprint Features

Feature_x_1

Fingerprint x Fingerprint y Fingerprint z

Decision Tree Classifier

Feature_x_2 Feature_y_1 Feature_z_2Feature_z_1 Feature_z_3

Open Raven Data Store Fingerprinting (DMAP)

Model building

openraven.com 11

Fingerprint ingestion is Open Raven’s primary method of supervised
training. The cloud-based ingestion workflow is shown below
(Figure 2). This flow utilizes AWS Fargate with Docker containers,
allowing Open Raven to quickly spin up application infrastructure for
fingerprint ingestion and to scale it down when no longer needed.

Figure 2 - DMAP Ingestion Flow

AWS Fargate Cluster

Application X v1.0

Application Definition

Ingest CLI DMAP-ML

Fingerprint Database

Application X v1.1

Application X v<n>

Fargate API

Open Raven Data Store Fingerprinting (DMAP)

Fingerprint ingestion

openraven.com 12

A user feedback loop both enhances Open
Raven’s ability to predict already known
applications, especially in yet unseen versions or
editions. This enables Open Raven to learn about
new software applications in real-time as users
ingest and provide feedback.

Figure 3 - Feedback Loop

DMAP-MLUser App User

Fingerprint Database

Fingerprint Prediction

User Feedback Loop

While Open Raven’s initial dataset and
model is based on fingerprint ingestion, its
workflow design allows (and encourages)
user contributions and refinement. The flow
looks like Figure 3 below. When application
predictions are shown to the user, they can

override existing predictions with their own
feedback. This feedback loop is integrated in
real-time into Open Raven’s DMAP predictive
engine in DMAP-ML, allowing DMAP to
leverage the newly gained knowledge for
future predictions.

User Contributions

openraven.com 12

openraven.com 13

Graph

Figure 4 - DMAP Architecture

DMAP

DMAP

DMAPApplication

Application Application

Application Fingerprint Database

Odin (Customer Cluster)

Enterprise Network

Asgard (Open Raven)

To understand how Open Raven’s DMAP
works, we need to examine its inner
workings and how it is built.

DMAP is a cloud-centric and distributed
architecture. DMAP-ML runs inside the Open

Raven management cluster (Asgard),
while DMAP runs within the customers’ Open
Raven (Odin) cluster. For users that wish to
map their enterprise (non-cloud) networks,
the DMAP-Scanner runs locally on-premises
and feeds back to DMAP.

Building Open Raven’s DMAP

openraven.com 13

openraven.com 14

Data stores can be bucketed into four main categories based on how noisy they are:

These different types of data stores
necessitate tailored approaches to
match their unique “personalities” and
ensure accurate identification. For those
applications that require reception of a valid
protocol frame before sending responses,
conventional fingerprinting is limited in
accuracy. In order to boost accuracy, Open
Raven is developing application-specific
fingerprint tests. While this approach will
boost identification of these services, it
doesn’t scale as it requires considerable
engineering research and development time.

Amazon Web Service (AWS) Fargate, on
the other hand, enables Open Raven to
dynamically spin up thousands of services
without requiring fixed infrastructure.
Combined with the fact that the
overwhelming majority of existing data store
applications are available as Docker images,
it’s easier than ever to generate sample data.
Unfortunately, not all Docker images are
compatible with Fargate. This means Open
Raven had to develop secondary methods
of generating large numbers of sample
sources.

Managing Data Store Profiles

Postgres will sit on an open connection
and offer no responses until you speak
its language. This may disconnect after a
certain number of characters read, or it may
never disconnect at all.

On connect, MySQL and SSH both readily
send a banner that identifies the application,
version and other service data.

Redis will sit quietly on an open socket but
will happily give you an error message when
you send data that isn’t a valid protocol
frame.

Splunk and Mongo offer a wealth of entropy
by responding to HTTP requests.

Church mouse quiet

Gabbers

Speaks only when spoken to

HTTP hipsters

openraven.com 15

DMAP is currently in its early days and will evolve and improve
over time. In its next phases, some bigger picture items Open
Raven will tackle are:

Future Open Raven DMAP Enhancements

Currently, Open Raven’s DMAP assesses
each port individually. This works well for
applications that reside on a single port
(MySQL, PostgreSQL, etc.), but leaves
entropy on the table for services that listen
on 2+ ports (Hadoop, MSSQL, etc.).

Currently, Open Raven’s DMAP assesses
each port individually. This works well for
applications that reside on a single port
(MySQL, PostgreSQL, etc.), but leaves
entropy on the table for services that listen
on 2+ ports (Hadoop, MSSQL, etc.).

Port Correlation

Banner identification
with neural networks

openraven.com 15

The foundation of protecting your data is knowing where it
resides, how it is stored and how it is being secured. This is
no mean feat in a modern enterprise that straddles cloud and
corporate networks, has hundreds of different types of data
stores, myriads of people handling sensitive data, third parties
who both store and handle data as well… all while regulators
watch with increasing scrutiny and the media report lapses in
the daily news. Simply put, it has been far too hard with available
solutions to maintain basic levels of data security.

DMAP from Open Raven is a step forward to regaining control
of data protection by making it easier to understand what data
stores are present in any environment. Once data locations can
be identified, they can be inventoried and classified. They can
then be assessed. They can be secured. And then, breaches can
be avoided and we can return our attention to where it belongs:
unlocking the potential of the data itself.

Conclusion

